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Glossary

amniote Group of vertebrates that develop
an amniotic membrane around the
embryo; includes reptiles, birds, and
mammals.

arcopallium A caudal (or posterior) subdivision of
the dorsal ventricular ridge in birds.

cortex A laminar brain structure consisting
of cells arranged in layers parallel to
the ventricular/pial surfaces and gen-
erally orthogonal (perpendicular) to
radial glial fibers.

developmental
regulatory gene

A gene encoding a transcription fac-
tor (or a cofactor) or a signaling
protein that is expressed during devel-
opment in specific patterns, and is
able to control expression of other
genes and regulate patterning and
morphogenesis of specific body parts.

DVR Dorsal ventricular ridge: a large
region of the ventrolateral pallium
of the telencephalon of birds and
reptiles.

hippocampal
formation

Derivative of the medial pallium in
different vertebrates. In mammals it
includes the dentate gyrus, the hip-
pocampus proper (Ammon’s fields),
and the subiculum. In birds it
includes the hippocampus and the
area parahippocampalis, whereas
in reptiles it includes the medial
and dorsomedial cortices.

homologous Having the same relative position
(topological position), embryonic
origin, and common ancestor; exhi-
biting biological homology.

homologue The same organ in different animals
under every variety of form and
function (Owen’s definition, in
1843; see A History of Ideas in
Evolutionary Neuroscience and
Field Homologies on this concept).
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homology A similarity attributed to common
evolutionary origin (see
‘homologous’).

hyperpallium A dorsal region of the avian telence-
phalon that develops from the dorsal
pallium. It typically forms a bulge on
the dorsal surface of the telencepha-
lon. It was often called Wulst.

M1 Primary motor area of the mamma-
lian neocortex.

mesopallium A dorsal subdivision of the DVR in
birds.

neocortex Derivative of the dorsal pallium in
mammals, that typically shows a
six-layered organization. It is also
known as isocortex.

nidopallium A ventral subdivision of the DVR in
birds.

pallial thickening A lateral expansion of the dorsal
cortex of reptiles, showing a non-
cortical organization. It is gener-
ally considered a lateral part of
the dorsal cortex. However, only
part of it may be a dorsal pallial
derivative, and more comparative
and developmental studies of this
structure are needed before reach-
ing any conclusion.

pallium A major dorsocaudal division of the
telencephalon in all vertebrates,
which in mammals gives rise to the
cortical regions, claustrum, and part
of the amygdala (including the corti-
cal areas plus the basolateral
complex). It is subdivided into four
parts, called medial, dorsal, lateral,
and ventral pallia.

piriform cortex Olfactory cortex of different verte-
brates. It derives from the
ventrolateral pallium. In reptiles, it
is also known as lateral cortex.

S1 Primary somatosensory area of the
mammalian neocortex.

sauropsid Group of vertebrates that includes
reptiles and birds.

subpallium A major ventrorostral (or basal) divi-
sion of the telencephalon in all
vertebrates, that in mammals gives
rise to most of the septum, the basal
ganglia, part of the amygdala
(including the intercalated and cen-
tromedial nuclei), and other cell
groups of the basal telencephalon,
such as the cholinergic corticopetal
groups. It is subdivided into striatal,
pallidal, and anterior entopeduncular
parts.

telencephalon Bilateral evaginations of the rostral
forebrain. It shows two major
divisions in all vertebrates: pallium
and subpallium.

tetrapod Group of vertebrates having two
pairs of limbs, that includes
amphibians, reptiles, birds, and
mammals.

thalamus Forebrain structure that derives
from the alar plate of the diencepha-
lon (in particular, from prosomeres
2 to 3). It is subdivided into a ven-
tral thalamus (also called
prethalamus, which derives from
prosomere 3), and a dorsal thala-
mus (or simply thalamus, which
derives from prosomere 2). The dor-
sal thalamus contains cell groups
that typically relay sensory informa-
tion to the subpallium and pallium
in vertebrates. In amniotic verte-
brates, the dorsal thalamus
contains specific cell groups that
relay unimodal sensory and/or
motor information to specific areas
of the dorsal pallium.

topology Geometric configuration of any
given structure (such as the brain)
according to internal coordinates,
which remain unaltered indepen-
dent of deformations or differential
growth of subdivisions that occur
during development. According to
this, the topological position of any
subdivision within the structure,
and its relation to neighbors,
remains the same throughout onto-
geny. Further, in organisms sharing
the same configuration and basic
organization plan (for example, ver-
tebrates), the topological position
of homologous subdivisions should
be the same across species.

V1 Primary visual area of the mamma-
lian neocortex.

Wulst German term previously employed
to name the hyperpallium. It lit-
erally means bulge, making
reference to the swollen or protu-
berant appearance of this
subdivision of the avian
telencephalon.

2.07.1 Introduction

One of the most challenging questions in brain evo-
lution is to ascertain the origin of neocortex and to
know whether a comparable cortical (pallial) region
is present in extant birds and reptiles, which would
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mean that a primordium of this structure was already
present in stem amniotes. This question has been
addressed by researchers since the end of the nine-
teenth century and continues to be discussed
nowadays (for example, see article by Aboitiz et al.,
2003, and commentaries on it). However, many
issues related to this question still remain uncertain
and controversial. Nevertheless, the combination of
developmental, paleontological, and adult anatomi-
cal plus functional data, analyzed using a cladistic
approach, has proven to be very useful for evolution-
ary studies; this combined approch has helped to
clarify some aspects of cortical evolution and has
offered some light on what direction to follow in
this research (for example, Northcutt and Kaas,
1995; Striedter, 1997, 2005; Medina and Reiner,
2000; Puelles, 2001; Butler and Molnár, 2002;
Aboitiz et al., 2003). Here I will review evidence
based on this approach that suggests that: (1) the
pallium of birds and reptiles contains a sector that is
homologous as a field to the mammalian neocortex
(i.e., they evolved from the same primordium present
in stem amniotes); (2) this pallial sector contains a
primary visual and a primary somatosensory area
that might be homologous to V1 and S1, respectively,
of mammalian neocortex; and (3) the frontal part of
this pallial sector contains a somatomotor control
area in birds (apparently overlapped with the soma-
tosensory field) and mammals (M1), but these areas
likely evolved independently and are, therefore, non-
homologous (see Evolution of the Nervous System in
Reptiles, Visual Cortex of Turtles, The Origin of
Neocortex: Lessons from Comparative Embryology,
Reconstructing the Organization of Neocortex of the
First Mammals and Subsequent Modifications, The
Evolution of Motor Cortex and Motor Systems).

2.07.2 Finding the Homologue of
Neocortex in the Pallium of Nonmammals

The neocortex is a six-layered structure located in the
dorsolateral part of the telencephalon in mammals,
above the ventricle, and it covers the central and
basal region that is occupied by the basal ganglia
and other basal telencephalic cell groups
(Figure 1a). The neocortex is also located above the
rhinal fissure, which separates it from the piriform
cortex and olfactory tract. In contrast to the neocor-
tex, the basal ganglia and other basal telencephalic
cell groups show a nuclear (nonlaminar) organiza-
tion. The difference between laminar versus nuclear
organization together with the relative position of the
cell masses with respect to the ventricle was once
considered a criterion to identify cortical (pallial)
and basal (subpallial) regions in the telencephalon
of nonmammals, and based on it the telencephalon
of birds and reptiles was thought to be made of a very
large basal ganglia and a very tiny cortical region
(reviewed in Medina and Reiner, 1995; Striedter,
1997; Reiner et al., 1998; Jarvis et al., 2005). This
is now known to be wrong, and there is a large
amount of evidence showing that the telencephalon
of birds and reptiles contains a large pallial region, a
major part of which shows a nuclear organization
and is located below the lateral ventricle (Figures 1b–
1d) (Karten and Hodos, 1970; Reiner, 1991, 1993;
Butler, 1994b; Striedter, 1997, 2005; Smith-
Fernández et al., 1998; Medina and Reiner, 2000;
Puelles et al., 2000; Jarvis et al., 2005). The evidence
showing this includes developmental and adult ana-
tomical and functional data, and it has mainly been
obtained after the development of modern techniques
that allowed detection of gene products (such as
enzymes, proteins and, more recently, mRNAs), tra-
cing of axonal pathways, fate mapping, and
functional studies of the brain.

The cortical region of mammals is subdivided into
medial, dorsal, and lateroventral units during devel-
opment and in the adult (Figures 1a and 2c), and the
neocortex derives from the dorsal subdivision
(Holmgren, 1925; Striedter, 1997). The cortical
region (pallium) of birds and reptiles is also subdi-
vided into medial, dorsal, and lateroventral units
(Figure 1) (Reiner, 1991, 1993; Butler, 1994b;
Striedter, 1997; Puelles et al., 2000). The problem
comes when trying to compare one-to-one these
subdivisions of the avian/reptilian pallium with
those of mammals. Some authors employing only
adult anatomical and functional data (including
connectivity patterns) believe that the dorsal subdi-
vision of the avian/reptilian pallium is homologous
to the dorsomedial part of the neocortex, whereas a
large part of the lateroventral pallium of birds/rep-
tiles (called dorsal ventricular ridge or DVR; in
particular, its ventral part in birds) is homologous
to the dorsolateral part of the neocortex or to spe-
cific cell groups of it (Karten, 1969, 1997; Reiner,
1993; Butler, 1994b). However, homologous struc-
tures must originate from the same embryonic
primordium (Striedter, 1997; Puelles and Medina,
2002; see Field Homologies). In this sense, develop-
mental studies indicate that only the dorsal
subdivision of the avian/reptilian pallium can be
compared to the neocortex, but not the DVR (in
particular, its ventral part, which includes the nido-
pallium in birds) (Striedter, 1997; Puelles et al.,
2000). Rather, both developmental and some adult
connectivity data suggest that the avian/reptilian
DVR is homologous to the claustrum and pallial
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Figure 1 Photomicrographs of frontal sections through the telencephalon of a postnatal mouse (a) or adult pigeon (b–i), showing the

general cytoarchitecture, as observed in Nissl staining (a), (b), (e), and some subdivisions based on immunostaining for tyrosine

hydroxylase (c), substance P (d), (f), (g), of choline acetyltransferase (h), (i). Note the typical lamination in the cerebral cortex of mouse

(a), that differs from the nuclear-like organization in the basal ganglia (striatum and pallium). In pigeon (b), as in other birds and reptiles,

most of the telencephalon is not laminated. Nevertheless, neurochemical data help to locate the main intratelencephalic boundary in

birds and reptiles, separating subpallium and pallium. The subpallium is relatively rich in tyrosine hydroxylase (c) and substance P (d),

(f), and includes the basal ganglia (striatum and pallidum). The avian pallium includes four major subdivisions, including the hippo-

campal formation (medially), the hyperpallium (dorsally), the mesopallium (laterodorsally), and the nidopallium (lateroventrally). At

caudal levels, the avian lateroventral pallium includes the arcopallium and part of the amygdala. The avian hyperpallium appears to be

the only derivative of the dorsal pallium and is therefore comparable (homologous as a field) to the mammalian neocortex (see Figure 2).

The avian hyperpallium (H) has four mediolateral subdivisions, called apical (HA), interstitial nucleus of apical (IHA), intercalated (HI),

and densocellular (HD) hyperpallium (e–i). These subdivisions are not comparable to neocortical layers, although they show some

functional features that resemble them. The lateral extension of the hyperpallium coincides with a cell-free lamina called superior frontal

lamina (arrows in (e) and (g)), and generally relates to a superficial groove called vallecula (va), although this is not true at rostral levels.

See text for more details. ACo, anterior cortical amygdalar area; cc, corpus callosum; Cl, claustrum; DT, dorsal thalamus; En,

endopiriform nucleus; GP, globus pallidus; H, hyperpallium; HA, apical hyperpallium; HD, densocellular hyperpallium; HI, intercalated

hyperpallium; Hp, hippocampal formation; Hy, hypothalamus; IHA, interstitial nucleus of the apical hyperpallium; Ins, insular cortex;

LOT, nucleus of the lateral olfactory tract; M, mesopallium; N, nidopallium; NCx, neocortex; Pir, piriform cortex; St, striatum; va,

vallecula; VPa, ventral pallidum; VT, ventral thalamus. Scale bars: 1cm (a, b); 0.5cm (c, d, f; scale in c); 1cm (e, h, i; scale in e).

166 Do Birds and Reptiles Possess Homologues



Do Birds and Reptiles Possess Homologues 167
amygdala (Bruce and Neary, 1995a, 1995b, 1995c;
Striedter, 1997; Guirado et al., 2000; Puelles et al.,
2000; Puelles, 2001; Dávila et al., 2002; Martı́nez-
Garcı́a et al., 2002). Below I review the evidence
that supports that the dorsal part of the avian/repti-
lian cortical region is homologous as a field to the
mammalian neocortex, and that both evolved from
a similar pallial subdivision present in the telence-
phalon of stem amniotes.

2.07.2.1 Developmental Evidence: Histogenetic
Origin and Transcription Factors

During development, the telencephalon of verte-
brates becomes parcellated into radial histogenetic
divisions and subdivisions that are comparable
across species (Striedter, 1997; Puelles and
Medina, 2002). Each division/subdivision shows a
unique molecular profile and produces specific cell
groups, most of which stay within the radial
domain, except for some selective cell populations
that undergo tangential migration across bound-
aries (Striedter and Beydler, 1997; Striedter et al.,
1998; Puelles et al., 2000; Cobos et al., 2001; Marı́n
and Rubenstein, 2001, 2002; Puelles and Medina,
2002). This conclusion is strongly supported by data
on developmental regulatory genes (encoding tran-
scription factors or signaling proteins that regulate
the expression of other genes), which are expressed
in specific and generally comparable spatiotemporal
patterns in the telencephalon of different vertebrates
during development (Smith-Fernández et al., 1998;
Puelles et al., 2000; Brox et al., 2003, 2004; Medina
et al., 2005), and play key roles in the regional speci-
fication and formation of telencephalic divisions and
subdivisions (Marı́n and Rubenstein, 2002).

2.07.2.1.1 Pallial subdivisions in mammals and
neocortical origin Classical and modern develop-
mental studies, including data on developmental
regulatory genes, indicate that the mammalian neo-
cortex derives from the pallium, one of the major
divisions of the telencephalon (Figure 2c) (Holmgren,
1925; Källén, 1951b; Puelles et al., 2000). During
development, the pallium shows specific expression
of numerous transcription factor-expressing genes,
including Pax6, Emx1/2, Tbr1/2, and several LIM-
homeobox (Lhx) genes (Simeone et al., 1992;
Stoykova and Gruss, 1994; Bulfone et al., 1995,
1999; Rétaux et al., 1999; Puelles et al., 2000;
Bulchand et al., 2001, 2003; Medina et al., 2004),
which play key roles in pallial specification and
parcellation, cell proliferation, and/or cell differen-
tiation (Stoykova et al., 1996, 2000; Zhao et al.,
1999; Bulchand et al., 2001; Hevner et al., 2001,
2002; Yun et al., 2001; Bishop et al., 2002, 2003;
Muzio et al., 2002; Campbell, 2003). For example,
Pax6, Emx1, and Emx2 are involved in pallial
specification and parcellation (Bishop et al., 2002,
2003; Muzio et al., 2002). Emx1 and Emx2 are
also involved in pallial growth (cell proliferation)
(Bishop et al., 2003). On the other hand, Tbr1
appears to be involved in the differentiation of
glutamatergic neurons, which are typical in the
pallium (Hevner et al., 2001).

What part of the pallium gives rise to the neocortex?
Classical developmental studies and studies on the
expression and function of developmental regulatory
genes indicate that the pallium of mammals contains
three main radial subdivisions (Figure 2c): (1) a medial
pallium, giving rise to the hippocampal formation; (2)
a dorsal pallium, giving rise to the neocortex; and (3) a
lateroventral pallium, giving rise to the piriform cor-
tex, claustrum, and pallial amygdala (the lateroventral
pallium is sometimes referred to as the piriform lobe,
and has the olfactory tract at the surface) (Holmgren,
1925; Striedter, 1997; Puelles et al., 2000; Puelles,
2001). The lateroventral pallium is also subdivided
into dorsal and ventral parts (called lateral and ventral
pallia, respectively, by Puelles et al., 2000), which
show distinct expression of the several developmental
regulatory genes, including Emx1 and Dbx1, and give
rise to different parts of the claustrum and pallial
amygdala (Figure 2c) (Puelles et al., 2000; Yun et al.,
2001; Medina et al., 2004). During early develop-
ment, the lateral pallium expresses strongly Emx1
but not Dbx1, whereas the ventral pallium expresses
Dbx1 in the ventricular zone but only shows Emx1
expression in the subpial surface (Puelles et al., 2000;
Yun et al., 2001; Medina et al., 2004). However, a
recent fate-mapping study indicates the existence of
numerous Emx1-expressing cells in both lateral pallial
and ventral pallial parts of the amygdala around and
after birth (Gorski et al., 2002), suggesting that there
may be a high degree of cellular mixing between these
subdivisions (Figure 2c).

The pallial subdivisions are apparently formed by
the early action of: (1) signaling proteins (such as
Wnt proteins) that diffuse from organizer centers
such as the cortical hem (Figure 2c), which, by way
of receptors, apparently control the expression of
downstream genes (including genes encoding tran-
scription factors) in adjacent pallial areas in a
concentration-dependent way (Ragsdale and
Grove, 2001); (2) transcription factors that are
expressed in opposing gradients in the pallium dur-
ing early development, involved in regional
specification, parcellation, cell proliferation, and/
or cell differentiation of the pallium (for example,
Pax6, Emx2, Lhx2; Donoghue and Rakic, 1999;
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Figure 2 a and b, Photomicrographs of frontal sections through the telencephalon of chick embryos (10 days of incubation), showing

expression of the chick genes Emx1 (red in a), Wnt8b (blue in a), Dlx2 (red in b), or Wnt7b (blue in b). The genes Dlx2 and Wnt7b are

expressed in the subpallium, either in the ventricular/subventricular zone of the whole subpallium (Dlx2) or the ventricular zone and

mantle of the striatum (Wnt7b). Expression of Emx1 helps to distinguish a ventral pallial (VP) subdivision, poor in Emx1 expression and

poor in subpallial marker genes. Note the expression of Wnt genes in the avian cortical hem, a putative secondary organizer comparable

to the cortical hem of mammals. c, Schematics of the telencephalon of a mammal (mouse), a bird (chick or pigeon), and a reptile (turtle),

as seen in frontal sections during development or in the adult. The pallial and the major subpallial subdivisions are represented in the

different species, based on known expression patterns of developmental regulatory genes observed during development. Four major

pallial subdivisions appear to exist in all groups, although the lateral and ventral subdivisions appear to have a large degree of cellular

mixing in the adult (which occurs at the level of the ventral pallium). The dorsal pallium gives rise to the neocortex (NCx) in mammals, to

the hyperpallium (H) in birds, and to the dorsal cortex (DC) in reptiles. The pallial thickening (PT) is often considered a lateral part of the

dorsal cortex. However, available data suggest that only part of it may be a dorsal pallial derivative, and more studies are needed to

know where the exact boundary between the dorsal and lateral pallium is, in reptiles. ACo, anterior cortical amygdalar area; cc, corpus

callosum; Cld, dorsolateral claustrum; CPu, caudoputamen (dorsal striatum); cxh, cortical hem; DC, reptilian dorsal cortex; DMC,

reptilian dorsomedial cortex; DP, dorsal pallium; DT, dorsal thalamus; DVR, dorsal ventricular ridge; En, endopiriform nucleus; GP,

globus pallidus; H, hyperpallium; HA, apical hyperpallium; HD, densocellular hyperpallium; HI, intercalated hyperpallium; Hp, hippo-

campal formation; Hy, hypothalamus; IHA, interstitial nucleus of the apical hyperpallium; Ins, insular cortex; LGE, lateral ganglionic
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Bulchand et al., 2001; Bishop et al., 2002);
(3) cofactors (activators or repressors) and other
regulatory proteins that regulate directly or indir-
ectly the expression of specific transcription factors,
that show sharp expression boundaries between
subdivisions (for example, the LIM-only protein
Lmo3, with a sharp expression boundary between
dorsal and lateroventral pallial subdivisions;
Bulchand et al., 2003; Vyas et al., 2003). The main
pallial subdivisions are differentially affected by
mutations targeting some of the above-mentioned
developmental regulatory genes, supporting that
they represent distinct histogenetic compartments.
For example, a mutation in the LIM-homeobox
gene Lhx2 produces a severe malformation of the
hippocampal formation and neocortex, but the piri-
form lobe appears unaffected (Bulchand et al.,
2001; Vyas et al., 2003).

2.07.2.1.2 Pallial subdivisions in nonmammals: the
dorsal pallium in birds and reptiles Since develop-
mental regulatory genes generally show highly
conserved sequences and expression patterns, they
have become very useful tools for identifying com-
parable brain regions in different vertebrate species
and for studies of brain evolution (Puelles et al.,
2000; Medina et al., 2005). Classical and modern
developmental studies, including radial glial analysis,
fate-mapping studies, and expression of developmen-
tal regulatory genes, indicate that the telencephalic
pallium in reptiles and birds contains three main
radial divisions (Figure 2c): (1) a medial pallium,
which gives rise to the medial/dorsomedial cortices
in reptiles and to the hippocampal formation (hippo-
campus and parahippocampal area) in birds; (2) a
dorsal pallium, which gives rise to the dorsal cortex
in reptiles and the hyperpallium or Wulst in birds;
and (3) a lateroventral pallium, which gives rise to
the lateral or piriform cortex, to a large nuclear
structure called the DVR and to some pallial amyg-
dalar nuclei in reptiles and birds (Holmgren, 1925;
Källén, 1951a, 1953, 1962; Striedter, 1997; Striedter
and Beydler, 1997; Striedter et al., 1998; Puelles
et al., 2000; Cobos et al., 2001; Martı́nez-Garcı́a
et al., 2002). As in mammals, the pallium of reptiles
and birds shows specific expression of Pax6, Tbr1/2,
and Emx1 during development (Smith-Fernández
et al., 1998; Bulfone et al., 1999; Puelles et al.,
2000; Garda et al., 2002). Similarly to mammals, in
birds there is an organizer center at the medial edge
of the pallium expressing Wnt-family genes (the
avian cortical hem; Figures 2a–2c), which may con-
trol the formation of the medial pallial subdivision
(Garda et al., 2002). This indicates that the specifica-
tion and parcellation of the avian/reptilian pallium
are controlled by many of the same regulatory genes
and mechanisms that control pallial development in
mammals.

Further, as in mammals, the lateroventral pallium
of birds and reptiles is subdivided into a lateral
pallium, showing broad and strong expression of
Emx1, and a ventral pallium, which expresses
Emx1 only in a thin band of the subpial mantle
(Figures 2a–2c) (Smith-Fernández et al., 1998;
Puelles et al., 2000). These two pallial subdivisions
of birds also differ by their distinct expression of
Dachsund and several Cadherin genes during devel-
opment (Redies et al., 2001; Szele et al., 2002).
However, as in mammals, the derivatives of the
lateral and ventral pallial subdivisions of birds
apparently display a high degree of cellular mixing
(Figure 2c), based on radial glial fiber disposition
and fate-mapping analysis in chick embryos
(Striedter and Beydler, 1997; Striedter et al., 1998;
Striedter and Keefer, 2000). The lateral pallium
includes the so-called mesopallium and posterior
amygdalar nucleus of birds, whereas in reptiles it
appears to include a small dorsolateral part of the
DVR plus the dorsolateral amygdalar nucleus
(Smith-Fernández et al., 1998; Guirado et al.,
2000; Puelles et al., 2000; Martı́nez-Garcı́a et al.,
2002). The ventral pallium includes the so-called
nidopallium and arcopallium of birds, whereas in
reptiles it appears to include most of the DVR plus
the lateral and other amygdalar nuclei (Smith-
Fernández et al., 1998; Guirado et al., 2000;
Puelles et al., 2000; Martı́nez-Garcı́a et al., 2002).
The olfactory tract is located at the surface of the
ventral pallium (or ventral DVR) in mammals,
birds, and reptiles (Striedter, 1997; Guirado et al.,
2000; Puelles et al., 2000; Puelles, 2001). Both the
relative (topological) position and molecular profile
of the pallial subdivisions (including expression of
Pax6, Tbr1, and Emx1) suggest that the dorsal pal-
lial subdivision of reptiles and birds, from which
derive the reptilian dorsal cortex and avian hyper-
pallium, is comparable and possibly homologous as
a field to the dorsal pallium of mammals, which gives
rise to the neocortex (Striedter, 1997; Puelles et al.,
2000). As in mammals, in reptiles the rhinal fissure
separates the dorsal cortex from the piriform cortex
and olfactory tract (Figure 2c). These data also indi-
cate that the ventral pallial part of the reptilian/avian
DVR (which has the olfactory tract and piriform
cortex at the surface, and is poor in Emx1 expres-
sion) is not comparable and cannot be homologized
to the neocortex, since they derive from different
embryonic primordia (Striedter, 1997; Striedter and
Beydler, 1997; Smith-Fernández et al., 1998;
Striedter et al., 1998; Puelles et al., 2000).
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However, one important issue that developmen-
tal studies have not yet resolved is where to locate
the exact boundary between the dorsal and lateral
pallial subdivisions, since both subdivisions express
many of the same developmental regulatory genes
(for example, Emx1) and the morphological land-
marks are not clear in birds and many reptiles. In
other words, what is the exact lateral extension of
the dorsal pallium in birds and reptiles? In mam-
mals, some developmental regulatory genes are
expressed differently in the lateral and dorsal pal-
lium (for example, the LIM-only genes Lmo2 and
Lmo3), but, unfortunately, data on the orthologue
genes are lacking in nonmammalian vertebrates
(Medina et al., 2005). I will return to this issue
below.

2.07.2.2 Adult Anatomical Evidence:
Morphological Landmarks, Molecular Markers,
and Connections

2.07.2.2.1 Morphological landmarks and molecu-
lar markers: problematic delimitation of the dorsal
pallium in birds and reptiles As noted above, the
dorsal cortex of reptiles and the hyperpallium of
birds appear to derive from the same pallial embryo-
nic subdivision as the neocortex. In adult animals,
these structures show cellular and molecular fea-
tures typical of pallium. For example, they contain
a majority of excitatory (glutamatergic) neurons
(the principal or projection neurons) and only a
relatively small subpopulation of inhibitory
(GABAergic) interneurons (Ottersen and Storm-
Mathisen, 1984; Reiner, 1993; Veenman and
Reiner, 1994, 1996; Swanson and Petrovich, 1998;
Fowler et al., 1999; Medina and Reiner, 2000;
Broman et al., 2004). In mammals, birds, and rep-
tiles, the principal pallial neurons have excitatory
projections to the striatum and brainstem (Ottersen
and Storm-Mathisen, 1984; Veenman and Reiner,
1996; Kenigfest et al., 1998; Fowler et al., 1999;
Broman et al., 2004). Some of the strongest evidence
showing that the principal pallial neurons are gluta-
matergic has been provided recently by the
localization of vesicular glutamate transporters
VGLUT1 and VGLUT2, although data on these
transporters exist only in mammals (Fujiyama
et al., 2001; Herzog et al., 2001; Broman et al.,
2004; Fremeau et al., 2004), but are lacking in
birds and reptiles. The GABAergic interneurons of
the mammalian neocortex and avian hyperpallium,
as those of the rest of the mammalian and avian
pallium, originate in the subpallium and migrate
tangentially to the pallium during development
(Figure 2c) (Anderson et al., 1997, 2001; Pleasure
et al., 2000; Cobos et al., 2001; Marı́n and
Rubenstein, 2001; Nery et al., 2002; Legaz et al.,
2005). This situation appears to be typical in all
tetrapods, since it is also described in amphibians
(Brox et al., 2003).

In addition to these and other molecular and cel-
lular features typical of the whole pallium, there are
no comparative data on molecular markers that
clearly distinguish the neocortex/dorsal pallium
from other pallial subdivisions in adult animals. In
mammals, the neocortex can be distinguished from
the adjacent pallial subdivisions because of its typi-
cal six-layered structure and the presence of the
rhinal fissure on its lateral egde. However, in birds
and reptiles there are no clear morphological land-
marks for distinguishing the lateral boundary of the
dorsal pallium. The absence of dorsal pallial mole-
cular markers has become an additional obstacule
for delimiting the lateral extension of the dorsal
pallium in adult birds and reptiles. As noted above,
more comparative studies on the expression of
developmental regulatory genes are also needed to
resolve this issue. In reptiles, the dorsal cortex
appears to include a rostrolateral extension called
pallial thickening (reviewed in Reiner, 1993;
Medina and Reiner, 2000). However, the identifica-
tion of the pallial thickening varies between authors
and reptilian species, and it appears that a ventral
part of it is located deep to the piriform cortex and,
thus, may be part of the lateral pallium (Figure 2c).
Analysis of radial glial fiber disposition in that part
of the reptilian pallium (Monzón-Mayor et al.,
1990) suggests that only the dorsal-most part of
the pallial thickening may belong to the dorsal pal-
lium (Figure 2c). This dorsal part of the pallial
thickening appears located above the rhinal fissure
(visible in only some reptiles), which is consistent
with its dorsal pallial nature. As in reptiles, so
also in birds, there is some confusion on where
to locate the lateral boundary of the hyperpallium
or Wulst. According to numerous studies, the
hyperpallium includes the so-called apical, inter-
stitial nucleus of apical, intercalated, and
densocellular hyperpallium (HA, IHA, HI, and
HD, respectively), and its lateral (or lateroventral)
boundary coincides with both the superior frontal
lamina and a superficial groove called vallecula
(Figures 1b–1i and 2c) (Karten et al., 1973;
Shimizu and Karten, 1990; reviewed in Medina
and Reiner, 2000). However, although this is gen-
erally true, the HD exceeds laterally the vallecula
at rostral levels (Shimizu and Karten, 1990), and
the superior frontal lamina appears to bend later-
ally when approaching the vallecula (Suárez et al.,
2006; see Figures 1e, 1g, and 2c). Further, the HD
is sometimes misidentified and either confused
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with the dorsal part of the mesopallium (a part of
the DVR that belongs to the lateral pallium) or
vice versa. This is partly due to the fact that the
HD (or part of it) shares with the mesopallium
expression of some molecular markers, such as
some glutamate receptor subunits (Wada et al.,
2004). This has raised the question of whether
the HD should or should not be considered part
of the hyperpallium. However, the HD also differs
from the mesopallium in many other molecular
features, such as expression of calcium-binding
proteins (Suárez et al., 2006), expression of delta
and mu opiate receptors (Reiner et al., 1989), and
expression of GluR1 glutamate receptor subunit,
neurotensin receptors, or the neuropeptide sub-
stance P (Reiner et al., 2004) (Figures 1f and
1g). Further, recent evidence indicates the exis-
tence of an additional pallial division (the
laminar pallial nucleus) clearly located at the
boundary between HD and mesopallium, showing
distinct expression of calcium-binding proteins
throughout development and in adult chicks
(Suárez et al., 2006). Thus, the questions raised
on the identity and nature of HD may be partially
due to the use of different species. Whereas all
four subdivisions of the hyperpallium are clearly
distinguished in birds with a large hyperpallium
(such as the owl), it appears that the more lateral
hyperpallial subdivisions, HI or HD, are difficult
to distinguish in either pigeons/chicks or song-
birds, respectively.

2.07.2.2.2 Connections One of the most typical
features of the mammalian neocortex is that it con-
tains unimodal sensory and motor areas that receive
their input directly from specific nuclei of the dorsal
thalamus (Northcutt and Kaas, 1995) (Figure 3).
These primary functional areas of mammals show
a detailed point-to-point representation of the body
and/or world (Krubitzer, 1995). The presence of
these primary, unimodal sensory and motor areas
makes the neocortex unique and different from
adjacent pallial divisions (such as the hippocampal
formation, which typically receives multimodal tha-
lamic input, and the piriform cortex, which typically
receives olfactory input from the bulb), and this has
been used for identifying the dorsal pallium or spe-
cific dorsal pallial functional areas in other
vertebrates. Nevertheless, the use of connections
(or any other single data) alone for identification
of homologies is highly risky since they may have
changed during the course of evolution (Striedter,
2005). For this reason, when searching for homo-
logies and for evolutionary interpretations, data on
connections need to be used in combination with
other data, including embryological origin and/or
topological position.

The neocortex contains: (1) a primary visual area
(V1), receiving input from the retinorecipient dorsal
lateral geniculate nucleus; (2) a primary somatosen-
sory area (S1), receiving input from specific nuclei of
the ventrobasal (or ventral posterior) thalamic com-
plex (including the ventral posterolateral (VPL) and
ventral posteromedial (VPM) nuclei in rodents),
which in turn receive somatosensory information
from the head and body via the trigeminal sensory
and dorsal column nuclei; and (3) a primary motor
area (M1), receiving input from specific nuclei of the
ventrobasal thalamic complex (including the ventral
anterior (VA) and ventral lateral (VL) nuclei in
rodents) that receive motor information from the
basal ganglia and deep cerebellar nuclei (Figure 3)
(Krubitzer, 1995; Groenewegen and Witter, 2004;
Sefton et al., 2004; Tracey, 2004; Guy et al., 2005).
These primary functional areas are present in most
groups of mammals and have a similar relative posi-
tion within the neocortex, with M1 and S1 being
always rostral to V1 (Krubitzer, 1995; Medina and
Reiner, 2000; Kaas, 2004). This suggests that these
areas (at least V1 and S1, as well as some other
sensory areas) were likely present in the origin of
the mammalian radiation (Krubitzer, 1995; Slutsky
et al., 2000). Further, it appears that the neocortex
of early mammals had multiple somatosensory
representations of the body, each one corresponding
to a distinct area (Krubitzer et al., 1995, 1997;
Catania et al., 2000a, 2000b; Kaas, 2004).
However, current available data suggest that early
mammals did not possess a separate motor cortical
area (M1), and this possibly appeared with the ori-
gin of placental mammals (Kaas, 2004). In
mammals with a small neocortex, the visual and
somatomotor areas show a close spatial contiguity
(for example, in monotremes or in the hedgehog). In
mammals with a large neocortex, such as rodents,
carnivores, and primates, V1 becomes secondarily
displaced to the most caudal part of the neocortex
(occipital lobe) by the development of novel cortical
areas involved in higher-order or multimodal infor-
mation processing. In these mammals, S1 is located
in the parietal lobe (in the postcentral gyrus of the
primate parietal lobe), whereas M1 is located in the
frontal lobe (in the precentral gyrus of the primate
frontal lobe). In rodents and primates, the initial
parcellation of these functional areas during devel-
opment is related (among other things) to their
expression of specific ephrin ligands and receptors,
some of which can be used as early markers of S1
(ephrinA5) or V1 (Ephrin receptor EphA6)
(Donoghue and Rakic, 1999; Yun et al., 2003).
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Figure 3 Schematics of lateral views of the brain of a rodent, a bird, and a reptile, showing the major connectivity patterns of

the visual, somatosensory, and motor pathways. In mammals, birds, and reptiles, partially comparable visual and somatosensory

pathways to the dorsal pallium are present. Visual information reaches a dorsal pallial primary visual area (V1 in mammals) by

way of the lateral geniculate nucleus (LGN), located in the lemnothalamus. In turn, the visual cortical (dorsal pallial) area

projects back to this thalamic nucleus and to the optic tectum. Somatosensory information reaches a dorsal pallial primary

somatosensory area (S1 in mammals) by way of the ventrobasal complex of the lemnothalamus (VB). In birds, the body is

mainly represented in the dorsal pallium, whereas in mammals and at least some reptiles, there is representation of both body

and head. In birds and mammals, the ventrobasal complex has a motor subdivision that receives basal ganglia and cerebellar

input, and projects to the dorsal pallium. In birds, this motor input ends in the somatosensory field (thus becoming a true

somatomotor area). In placental mammals, such as rodents, the motor input ends mostly in a separate primary motor area (M1),

although a small somatosensory–motor overlap occurs at the interface between M1 and S1. See text for details. In mammals,

both S1 and M1 project back to the ventrobasal thalamic complex and to the brainstem and spinal cord by way of the pyramidal

tract. S1 projections primarily end on precerebellar centers (such as the pontine nuclei) and somatosensory-relay centers (such

as the dorsal column nuclei and the dorsal horn of the spinal cord). M1 projections primarily reach premotor precerebellar and

reticulospinal centers (such as prerubral and rubral neurons), and also provide some input to motoneuron pools, such as those

of the ventral horn of the spinal cord. In birds, the somatomotor dorsal pallial area shows descending projections resembling

both S1 and M1 (especially in some avian species). In reptiles, the putative ventrobasal complex does not include any motor

subdivision. The somatosensory area of the reptilian dorsal pallium only shows projections to diencephalic and midbrain

tegmentum, reaching premotor precerebellar and reticulospinal cell groups, and suggesting that it may control or modulate

motor behavior. However, this area lacks most of the connections typical of a true somatomotor area, suggesting that this likely

evolved independently in birds and mammals. Cb, cerebellum; CPU, caudoputamen (dorsal striatum); DC, reptilian dorsal cortex;

DCN, dorsal column nuclei; Ds5, descending sensory trigeminal nucleus; DVR, dorsal ventricular ridge; GLN, dorsal lateral

geniculate nucleus; GP, globus pallidus; H, hyperpallium; Hp, hippocampal formation; IC, inferior colliculus; M, mesopallium; M1,

primary motor area of neocortex; mo, motoneuron pools; N, nidopallium; OB, olfactory bulb; oc, optic chiasm; Po, pontine nuclei;

Pr5, principal sensory trigeminal nucleus; RF, reticular formation; Ru, nucleus ruber; S1, primary somatosensory area of

neocortex; SC, superior colliculus; St, striatum; TeO, optic tectum; V1, primary visual area of neocortex; VB, ventrobasal

thalamic complex.
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Are these areas present in the dorsal pallium of
reptiles and/or birds? Data on ephrin ligands and
receptors in the dorsal pallium of birds and reptiles
are lacking but, in any case, the search for functional
areas in the dorsal pallium of birds and reptiles
requires the analysis of the thalamopallial projections
in these vertebrate groups and/or electrophysiological
recordings in the pallium.

Of interest, the adult hyperpallium of birds and
dorsal cortex of reptiles show some patterns of con-
nections with the dorsal thalamus similar to those of
the neocortex (Figure 3). In particular, the patterns
of connections suggest the existence of a primary
visual area and a primary somatosensory area in
the reptilian dorsal cortex and avian hyperpallium
that are comparable and might be homologous to
the primary visual (V1) and primary somatosensory
(S1) areas of the mammalian neocortex (reviewed in
Medina and Reiner, 2000; see also Wild and
Williams, 2000). The somatosensory area found in
the avian hyperpallium shows some connections,
suggesting that it may represent a true somatomotor
area, able to play a role in modulation of somato-
sensory input as well as in motor control,
resembling aspects of mammalian S1þM1 (perhaps
like the somatomotor area present in the origin of
mammals). However, available data suggest that the
motor control features of this avian hyperpallial
area evolved independently from those found in M1.

The conclusion of homology of the visual and
somatosensory cortical areas is partially based on
assumption of homology of the thalamic nuclei of
reptiles, birds, and mammals relaying the visual or
somatosensory information to the dorsal pallium.
But, for this to be true, these nuclei not only need
to share similar connections, but also need to origi-
nate from the same embryonic primordium (or be
located in the same histogenetic field). This will be
analyzed in the following section.

2.07.3 Thalamopallial Projections and
Sensory and Motor Areas in the Dorsal
Pallium of Mammals, Birds, and Reptiles

2.07.3.1 Divisions of the Thalamus: Specific
Relation of the Lemnothalamus with the Dorsal
Pallium

To know whether the thalamic nuclei projecting to
V1, S1, or M1 of mammalian neocortex are located in
the same histogenetic unit as the avian and reptilian
thalamic nuclei projecting to the hyperpallium/dorsal
cortex, it is important to analyze the development and
adult organization of the thalamus. In this sense,
Butler (1994a) proposed the existence of two dorsal
thalamic divisions, the lemnothalamus and the col-
lothalamus, which receive sensory input through
different systems and have different connections with
the pallium (see The Dual Elaboration Hypothesis of
the Evolution of the Dorsal Thalamus). The lem-
nothalamus includes nuclei receiving sensory input
primarily from lemniscal systems and projecting to
the medial and/or dorsal pallium (Butler, 1994a,
1994b). The collothalamus includes nuclei receiving
a major collicular input and projecting to the latero-
ventral pallium (Butler, 1994a, 1994b). A similar but
more complex subdivision of the thalamus was later
proposed by other authors based on differential
expression of cadherins or calcium-binding proteins
by thalamic subdivisions during development or in the
adult (Dávila et al., 2000; Redies et al., 2000).
According to these authors, the dorsal thalamus is
subdivided into three main histogenetic divisions,
called dorsal, intermediate, and ventral tiers, each
one showing a specific immunostaining profile and
connections with a particular pallial subdivision
(Dávila et al., 2000; Redies et al., 2000; Puelles,
2001). The dorsal tier corresponds roughly to the
lemnothalamus, whereas the intermediate and ventral
tiers roughly correspond to the collothalamus of Ann
Butler (Butler, 1994a, 1994b; Dávila et al., 2000;
Redies et al., 2000). Thus, the thalamic nuclei project-
ing to V1, S1, and M1 in mammals are all located in
the dorsal tier or lemnothalamus (Puelles, 2001;
Butler, 1994a). What about the visual and somatosen-
sory/somatomotor thalamic nuclei projecting to the
avian hyperpallium and reptilian dorsal cortex?

2.07.3.2 A Primary Visual Area in the Dorsal
Pallium of Birds and Reptiles and Its Comparison
to V1 of Mammals

In mammals, V1 (area 17) receives unimodal visual
input from the dorsal lateral geniculate nucleus and
projects back to this nucleus and to the superior
colliculus (Figure 3) (Krubitzer, 1995; Sefton et al.,
2004). A comparable retinorecipient dorsal lateral
geniculate nucleus is present in the lemnothalamus
of birds and reptiles that projects to the avian hyper-
pallium and reptilian dorsal cortex (Figure 3)
(Karten et al., 1973; Hall et al., 1977; Miceli and
Repérant, 1982; Miceli et al., 1990; Mulligan and
Ulinski, 1990; Butler, 1994a, 1994b; Kenigfest
et al., 1997; Medina and Reiner, 2000; Zhu et al.,
2005). In lizards, this nucleus is sometimes called
intercalatus (Bruce and Butler, 1984a) and appar-
ently corresponds to the deeper part (cell plate) of
the dorsal lateral geniculate nucleus of other authors
(Kenigfest et al., 1997; Dávila et al., 2000). In
lizards, the geniculate thalamic input only reaches
a lateral extension of the dorsal cortex, called pallial
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thickening (Bruce and Butler, 1984a; Kenigfest
et al., 1997). In birds, the geniculate thalamic
input mainly reaches a hyperpallial subdivision
called interstitial nucleus of the apical hyperpallium
or IHA (Karten et al., 1973; Watanabe et al., 1983).
As in mammals, the dorsal pallial area of birds and
at least some reptiles (such as turtles) that receives
visual input from the geniculate nucleus projects
back to this thalamic nucleus and the optic tectum
(Figure 3) (Karten et al., 1973; Hall et al., 1977;
Miceli and Repérant, 1983, 1985; Reiner and
Karten, 1983; Ulinski, 1986; Mulligan and Ulinski,
1990; Butler, 1994a, 1994b; Kenigfest et al., 1998).
Therefore, their similar position, histogenetic ori-
gin, and connections suggest that the visual
lemnothalamic nuclei and related pallial areas of
the neocortex, hyperpallium, and dorsal cortex of
mammals, birds, and reptiles are homologous, and
evolved from similar areas present in their common
ancestor.

2.07.3.3 A Primary Somatosensory Area in
the Dorsal Pallium of Birds and Reptiles and
Its Comparison to S1 of Mammals

In the mammalian neocortex, S1 receives somato-
sensory input from the ventrobasal or ventral
posterior thalamic complex (in particular, from
VPL, receiving body information via the dorsal col-
umn nuclei, and from VPM, receiving head
information via the principal sensory trigeminal
nucleus; restricted parts of VPL/VPM also receive
pain and temperature information directly from the
spinal cord through the dorsal horn and spinal tri-
geminal nucleus) (Figure 3). In turn, S1 shows
descending projections back to this thalamic com-
plex and to the brainstem and spinal cord (reaching
primarily precerebellar and/or somatosensory relay
centers) (Weisberg and Rustioni, 1977; McAllister
and Wells, 1981; Torigoe et al., 1986; Krubitzer,
1995; Desbois et al., 1999; Manger et al., 2001;
Martı́nez-Lorenzana et al., 2001; Killackey and
Sherman, 2003; Craig, 2004; Friedberg et al.,
2004; Gauriau and Bernard, 2004; Leergaard
et al., 2004; Oda et al., 2004; Tracey, 2004;
Waite, 2004; Guy et al., 2005). Similarly to S1, the
frontal part of the avian hyperpallium (Wulst)
receives somatosensory input from the dorsointer-
mediate ventral anterior thalamic nucleus (DIVA),
which is a target of both the dorsal column nuclei
(Wild, 1987, 1989, 1997; Funke, 1989a, 1989b;
Korzeniewska and Güntürkün, 1990) and the spinal
cord (Schneider and Necker, 1989) (Figure 3). The
avian DIVA develops in the dorsal tier/lemnothala-
mus of the dorsal thalamus (Redies et al., 2000) and,
thus, appears comparable in position, histogenetic
origin, and connections to the mammalian ventro-
basal thalamic complex (mainly to VPL). In
addition to receiving somatosensory input from
DIVA, the frontal part of the Wulst (hyperpallium)
projects back to this thalamic nucleus, to the brain-
stem, and, in some species of birds, to the cervical
spinal cord (Figure 3) (Wild, 1992; Wild and
Williams, 2000). As with S1, the frontal hyperpallial
descending projections predominantly reach precer-
ebellar areas and somatosensory relay areas, such as
the thalamic DIVA, the dorsal column nuclei, and
the vicinity of medial lamina V in the cervical spinal
dorsal horn, which suggests that the frontal hyper-
pallium may be primarily concerned with the
control/modulation of somatosensory input (Wild
and Williams, 2000). This suggests that the avian
frontal hyperpallium contains a primary somatosen-
sory area that appears comparable to S1 of
mammals (Wild, 1992; Medina and Reiner, 2000;
Wild and Williams, 2000). However, unlike S1, a
sensory trigeminal representation (with head infor-
mation) has not been found in the hyperpallium
(Wild et al., 1985). To know whether these primary
somatosensory areas of the avian hyperpallium and
mammalian neocortex are homologous we need to
analyze if a similar pallial area is present in the
dorsal pallium of reptiles.

The frontal part of the reptilian dorsal cortex was
previously thought to contain a somatosensory area
based on input from a spinorecipient thalamic
nucleus (Ebbesson, 1967, 1969, 1978; Hall and
Ebner, 1970). Modern tract-tracing data in lizards
indicate that the rostral dorsal cortex receives dis-
tinct ipsilateral input specifically from a ventral part
of the dorsolateral thalamic nucleus (Guirado and
Dávila, 2002), which receives somatosensory input
from the dorsal column and trigeminal sensory
nuclei as well as from the spinal cord (Figure 3)
(Hoogland, 1982; Desfilis et al., 1998, 2002). Of
interest, the dorsolateral thalamic nucleus of lizards
is located in the dorsal tier/lemnothalamus of the
dorsal thalamus, and its ventral part DLV, which
differs from the rest of the nucleus by its connections
and calbindin immunostaining profile – shows a
location that resembles that of avian DIVA and
ventrobasal complex of mammals (Dávila et al.,
2000). The projection from the dorsal column and
sensory trigeminal (both descending and principal)
nuclei and from the spinal cord to the dorsolateral
thalamic nucleus appears to reach specifically its
ventrolateral part or DLV (plus the area adjacent
to it, called intermediodorsal nucleus; Ebbesson,
1967, 1969, 1978; Hoogland, 1982). Thus, DLV
of lizards appears to be a distinct subnucleus of the
lemnothalamus that may be primarily involved in
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somatosensory information processing. Using mod-
ern tract-tracing techniques, similar thalamocortical
projections have also been described in crocodiles
(Pritz and Stritzel, 1987; these authors also found a
specific dorsolateral cell population projecting only
ipsilaterally to the dorsal cortex) and in adult and
developing turtles (Hall et al., 1977; Cordery and
Molnár, 1999). In turtles, the thalamocortical
nucleus appears located in a perirotundal position,
medially adjacent to the dorsal lateral geniculate
nucleus and ventral to the dorsolateral thalamic
nucleus (a position that resembles the DLV of
lizards), and this perirotundal area is the site of
termination of spinal and dorsal column nuclei
(but not retinal) projections (Künzle and Schnyder,
1983; Siemen and Künzle, 1994). However, other
authors studying turtles have not found any thala-
mic relay center projecting to the dorsal cortex other
than the geniculate nucleus (Zhu et al., 2005). This
may be due to the more caudal location of the
injections in the dorsal cortex (note that the soma-
tosensory area is located at its rostral pole) or to the
employment of in vitro tract-tracing techniques in
the study done by Zhu et al. (2005). Based on the
evidence presented above, two different thalamic
relay centers conveying either visual or somatosen-
sory information to the dorsal cortex are present in
most reptilian groups, and were likely present in their
common ancestor. Thus, the frontal part of the dorsal
cortex of most reptiles contains a primary somatosen-
sory area that is comparable and may be homologous
to those present in the hyperpallium of birds and the
neocortex of mammals. Consistent with this, the rela-
tive position of the primary somatosensory area in the
dorsal pallium is similar in mammals, birds, and rep-
tiles, being always located rostral (in a more frontal
position) to the primary visual area.

2.07.3.4 Do Birds and/or Reptiles Possess
a Somatomotor Dorsal Pallial Area Comparable to
M1 of Mammals?

In the mammalian neocortex, M1 (area 4) receives
motor input from a specific part of the lemnothala-
mic ventrobasal complex (VA/VL nuclei in rodents),
and shows descending projections back to this tha-
lamic complex, and to the brainstem and the spinal
cord (Figure 3), where the projections reach precer-
ebellar (including the red and pontine nuclei) and
sensory-relay areas (including dorsal column nuclei
and dorsal horn of the spinal cord), but also reach
premotor reticulospinal cell groups (including the
prerubral and rubral neurons) and, in some species
(such as rodents and primates), motor neuron pools
such as those of the ventral horn in the spinal cord
(Weisberg and Rustioni, 1977; Humphrey et al.,
1984; Torigoe et al., 1986; Liang et al., 1991;
Krubitzer, 1995; Song and Murakami, 1998;
Kuchler et al., 2002; Leergaard et al., 2004). In
general, the descending projections of M1 are simi-
lar to those of S1, and axons from both areas
contribute to form the pyramidal tract. However,
the descending projections of S1 and M1 are some-
what different. For example, in the brainstem, S1
projects significantly more heavily to the precerebel-
lar pontine nuclei than M1 (Leergaard et al., 2004),
whereas M1 is the major source of corticorubral
axons (Giuffrida et al., 1991; Burman et al., 2000)
(Figure 3). Further, in the spinal cord, S1 axons
primarily reach dorsal horn laminae, whereas M1
axons, but not S1 axons, also reach the motoneuron
pools in the ventral horn (Figure 3) (Ralston and
Ralston, 1985; Martı́n, 1996). Current available
data suggest that early mammals lacked a separate
motor cortical area (M1), and that a separate M1
likely evolved with the origin of placental mammals
(Kaas, 2004). Thus, it appears that early mammals
only had an S1 where somatosensory and motor
attributes were overlapped, a situation which resem-
bles that found in marsupials (Kaas, 2004).

Similarly to M1, the frontal part of the avian
hyperpallium (Wulst) receives input from a putative
motor thalamic nucleus, the ventrointermediate
area (VIA), which receives input from the avian
globus pallidus, substantia nigra pars reticulata,
and deep cerebellar nuclei (Medina et al., 1997)
(Figure 3). The avian VIA resembles the motor
part of the mammalian ventrobasal thalamic com-
plex (VA/VL) in both its position (located in the
lemnothalamus and adjacent to the somatosensory
part of the avian ventrobasal complex or DIVA),
and its connections (Medina et al., 1997). Both
DIVA and VIA project to the frontal part of the
hyperpallium (Wild, 1987, 1989; Funke, 1989a,
1989b; Korzeniewska and Güntürkün, 1990;
Medina et al., 1997), where somatosensory and
motor information may be completely overlapped
(Medina and Reiner, 2000) (Figure 3). Of note, as
S1 and M1 of mammals, the frontal hyperpallium of
birds projects back to the thalamus (including
DIVA), to the brainstem and, in some avian species,
to the cervical spinal cord (Wild, 1989, 1992;
Medina and Reiner, 2000; Wild and Williams,
2000) (Figure 3). In the brainstem and spinal cord,
the frontal hyperpallial projections reach precere-
bellar (including pretectal and rubral nuclei),
sensory-relay cell groups (including the dorsal col-
umn nuclei and the dorsal horn in the spinal cord),
premotor reticulospinal neurons (such as rubrosp-
inal neurons) and, in some birds, a few axons
reach the ventral horn of the cervical spinal
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cord, where motoneuron pools are located (Wild,
1992; Wild and Williams, 2000). Thus, the frontal
hyperpallium contains a somatosensory/somato-
motor area that appears at least partially
comparable to the overlapped S1þM1 of marsu-
pials, and possibly of early mammals. To know
whether these areas are homologous we need to
know if a similar sensorimotor field is present in
the dorsal pallium of reptiles.

As noted above, in some reptiles (lizards), the
frontal part of the dorsal cortex appears to receive
somatosensory input from a specific subdivision of
the dorsolateral thalamic nucleus, the DLV (Guirado
and Dávila, 2002) (Figure 3). Further, this part of the
reptilian dorsal cortex has descending projections to
diencephalic and midbrain tegmetum (Hoogland and
Vermeulen-vanderZee, 1989; Guirado and Dávila,
2002). In the prerubral tegmentum, these cortical
projections reach at least the nucleus of the medial
longitudinal fascicle, which is a well-known premo-
tor precerebellar and reticulospinal cell group
(Figure 3) (ten Donkelaar, 1976; Woodson and
Künzle, 1982; Wolters et al., 1986). This feature
has been used to suggest that this part of the reptilian
dorsal cortex may represent a rudimentary sensori-
motor area, partially comparable to that in other
amniotes (Medina and Reiner, 2000; Guirado and
Dávila, 2002). However, this putative sensorimotor
area of the reptilian dorsal cortex does not possess a
distinct motor field comparable to M1 of mammals,
since its thalamic input does not include a basal gang-
lia-recipient nor a cerebellar-recipient nucleus. No
part of the dorsolateral thalamic nucleus and no
part of the reptilian dorsal thalamus receives direct
basal ganglia input (Reiner et al., 1984, 1998;
Medina and Smeets, 1991) nor input from the deep
cerebellar nuclei (Künzle, 1985). Further, in some
reptilian species (including the pond turtle) the des-
cending projections of the dorsal cortex are rather
modest and do not reach rubral and, perhaps, not
even prerubral levels (Zhu et al., 2005). Thus, at
present it is unclear whether ancestral reptiles had a
rudimentary somatomotor area in the dorsal cortex,
and more data are needed in other reptilian species
before any conclusion can be reached. If a rudimen-
tary somatomotor area was present in the dorsal
cortex of reptiles, this area lacked many of the con-
nections that characterize the true somatomotor
cortical area found in birds and mammals (including
basal ganglia and cerebellar indirect input, or output
to additional precerebellar and reticulospinal fields
and to the spinal cord), meaning that these features
likely evolved independently in the avian and mam-
malian radiations.
2.07.3.5 Other Functional Areas in the Pallium of
Birds and Reptiles and Comparison to Mammals

In birds and reptiles, there are other sensory (visual,
somatosensory, and auditory) areas in the pallium
that are located in the DVR (Karten and Hodos,
1970; Dubbeldam et al., 1981; Bruce and Butler,
1984b; Wild, 1987, 1994; Wild et al., 1993, 1997;
Guirado et al., 2000; reviewed by Karten and
Shimizu, 1989; Butler, 1994b; Reiner, 2000).
These sensory areas are mainly located in the ventral
pallial part of the DVR (called nidopallium in birds;
Reiner et al., 2004) and receive visual, somatosen-
sory, or auditory input from specific nuclei of the
collothalamus or directly from the brainstem (see
above-cited references; this is described in detail in
Evolution of the Nervous System in Reptiles, Visual
Cortex of Turtles). In birds, some of these DVR
areas appear to have a better (more detailed) sensory
representation than those present in the hyperpal-
lium, such as the nucleus basalis of the budgerigar,
which shows a highly somatotopically organized
representation of head and body (Wild and
Farabaugh, 1996; Wild et al., 1997). In addition,
the caudal part of the DVR in birds (including the
caudal nidopallium and the region called arcopal-
lium) and reptiles contains associative and/or motor
centers that project to the basal ganglia, hypothala-
mus, and/or, in birds, also to premotor brainstem
centers (Zeier and Karten, 1971; Bruce and
Neary, 1995a, 1995b, 1995c; Davies et al.,
1997; Dubbeldam et al., 1997; Lanuza et al.,
1997, 1998; Kröner and Güntürkün, 1999; Bottjer
et al., 2000; Martı́nez-Garcı́a et al., 2002). Further,
in songbirds and budgerigars, the caudal DVR
(arcopallium) contains a specific motor area that
projects directly to motor brainstem nuclei, the
ambiguus, and/or hypoglossal motor nuclei, which
control syringeal, respiratory, and tongue muscles
(Nottebohm, 1991; Vicario, 1991a, 1991b; Wild,
1993; Brauth et al., 1994; Striedter, 1994; Durand
et al., 1997; see details on this motor pallial area and
its connections in The Evolution of Vocal Learning
Systems in Birds). In songbirds and budgerigars, this
motor area is well developed and plays a key role in
vocalization (including vocal learning and vocal
production), and apparently evolved independently
in songbirds and budgerigars (Striedter, 1994).
These sensory, associative, and motor areas of the
DVR play very important roles in sensory proces-
sing, sensorimotor integration, and motor control,
and in birds are also involved in cognitive tasks such
as learning, memory, and spatial orientation, and
they have been compared to specific areas or specific
cell populations of the mammalian temporal,
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frontal, and prefrontal neocortex (for example,
Karten, 1969, 1997; Morgensen and Divac, 1993;
Veenman et al., 1995; Kröner and Güntürkün,
1999; see The Evolution of Vocal Learning
Systems in Birds and Humans). Although this
makes sense from a functional point of view, the
different histogenetic origin of the DVR (lateroven-
tral pallium) and neocortex (dorsal pallium)
indicates that the similarities of such sauropsidian
DVR and mammalian neocortical areas represent
cases of analogy (homoplasy). Consistent with this,
the thalamic nuclei that project to the DVR sensory
areas are not comparable in location to those that
project to the neocortex. Thus, the DVR receives
sensory information via thalamic nuclei that are
located in the intermediate and ventral tiers of the
dorsal thalamus, whereas those that project to the
neocortex are generally located in the dorsal tier or
lemnothalamus (Dávila et al., 2000, 2002; Puelles,
2001). Further, the avian motor area(s) of the cau-
dal DVR projecting to the premotor and/or motor
brainstem are not present in the caudal DVR of
reptiles (some of them are not even present in all
birds), which means that they evolved as novelties in
some birds. Thus, it appears that, in contrast to
mammals, the repertory of complex behaviors
shown by birds and reptiles depends primarily
(although not exclusively) on a large variety of cell
groups that develop in the ventrolateral pallial his-
togenetic division, but the contribution of dorsal
pallial areas to these behaviors is likely more modest
(especially in reptiles).

2.07.4 Pallial Lamination in Birds and
Mammals: Evidence for Independent
Evolution

2.07.4.1 Different Development and Adult
Organization of Neocortical Layers and
Hyperpallial Subdivisions

In mammals, the neocortex shows a laminar structure
of six layers, and each layer has a similar cytoarchi-
tecture and general pattern of connections
throughout all areas, including V1, S1, and M1
(Figure 4). Thus, the dorsal thalamic input mainly
contacts cells in neocortical layer 4, a layer that is
called granular layer because of its typical granule or
stellate cells (Humphrey et al., 1977; Kharazia and
Weinberg, 1994). In this layer, thalamic axons con-
tact granule cells as well as apical dendrites of
pyramidal neurons located below, in layers 5/6
(Mountcastle, 1997). In addition, thalamocortical
axons ending in layer 4 provide collaterals that ter-
minate in layer 5 and/or 6, but other thalamocortical
axons terminate in layer 1 (Figure 4) (Jones, 1975;
Rausell et al., 1992; Lu and Lin, 1993; Zhang and
Deschenes, 1998; Groenewegen and Witter, 2004;
Sefton et al., 2004). Layers 2 and 3 are called supra-
granular layers, located superficially to layer 4, and
typically contain small to medium-sized pyramidal
neurons involved in corticocortical (associational)
projections (Gilbert and Kelly, 1975; Jones and
Wise, 1977; Swadlow and Weyand, 1981; Sefton
et al., 2004). Layers 5 and 6 are called infragranular
layers, located deep to layer 4, and typically contain
large pyramidal neurons that show descending pro-
jections to the striatum, thalamus, and brainstem
(Figure 4). Layer 5 mainly projects to the striatum
and brainstem (to the midbrain tectum in the case of
V1 and to the brainstem tegmentum and spinal cord
in the case of S1 and M1), whereas layer 6 typically
projects to the thalamus (Gilbert and Kelly, 1975;
Jones and Wise, 1977; Swadlow and Weyand, 1981;
Sefton et al., 2004; Tracey, 2004). The pyramidal
neurons of the supra- and infragranular layers of the
neocortex typically have a long apical dendrite that
span the cortical layers above its cell body (Figure 4),
which provides one of the anatomical bases for the
columnar functional organization of the neocortex
(Mountcastle, 1997; Lübke et al., 2000).

In birds, the dorsal pallium (corresponding to the
so-called hyperpallium) also shows cytoarchitectonic
subdivisions, considered by some authors as the
layers of the neocortex (for example, Karten et al.,
1973; Shimizu and Karten, 1990; reviewed by
Medina and Reiner, 2000). From rostral (frontal) to
caudal levels, each hyperpallial subdivision is charac-
terized by a specific pattern of connections which
partially resembles the connectivity organization of
neocortical layers (Figure 4). For example, the thala-
mic input ends primarily in an intermediate
hyperpallial subdivision called the IHA, in both the
visual and somatomotor areas (Karten et al., 1973;
Watanabe et al., 1983; Wild, 1987, 1997), resem-
bling neocortical layer 4. Nevertheless, some
thalamic axons appear to end in the hyperpallium
outside IHA (Figure 4). Further, the descending pro-
jections to the striatum, thalamus, and brainstem
mainly originate in the apical hyperpallium or HA
(Reiner and Karten, 1983; Wild, 1992; Wild and
Williams, 1999, 2000), resembling neocortical layers
5–6. Morever, the densocellular hyperpallium (HD)
appears to be mainly involved in connections with
other pallial and subpallial areas (Veenman et al.,
1995; Kröner and Güntürkün, 1999; Wild and
Williams, 1999), thus partially resembling neocorti-
cal layers 2–3. In addition to the apparently similar
laminar organization of both neocortex and hyper-
pallium, there is evidence suggesting that they also
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Figure 4 Schematics of the layers/subdivisions, cell types, and major connections of the mammalian neocortex, avian

hyperpallium, and reptilian dorsal cortex. The mammalian neocortex shows a six-layered organization, and each layer shows
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layers contain large pyramidal neurons having apical dendrites that radially span the layers above, and give rise to descending

projections to the striatum, thalamus, and brainstem. Supragranular layers contain small to medium pyramidal neurons involved

in corticocortical (associational) connections. This anatomical and cellular organization, with radially oriented dendrites that span

most layers, constitutes one of the basis of the functional columnar organization of neocortex. In contrast to this organization, the

avian hyperpallium shows four mediolateral subdivisions that are formed and organized in a radically different way. These

subdivisions contain multipolar or stellate-like neurons having star-like oriented dendrites that do not span adjacent subdivisions

(i.e., they lack the translayer, radial dendritic organization typical of neocortex). In contrast to the neocortex, the connections

between subdivisions occur by way of tangential projections, instead of the radial connections typical of neocortical columns.

Nevertheless, the patterns of connections of hyperpallial subdivisions partially resemble those of neocortical layers. For example,
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descending projections to the striatum, thalamus, and brainstem, and another subdivision (HD) giving rise to pallial projections.

However, HA also projects to other pallial areas, whereas HD also projects to the striatum and thalamus, indicating that their

similarity with specific neocortical layers in terms of connectivity is only partial. The reptilian dorsal cortex is very simple but

resembles, in a very rudimentary way, both the laminar organization of neocortex and the mediolateral subdivisions of hyper-

pallium. Thus, the reptilian dorsal cortex contains a medial subdivision (dorsal cortex proper or DC) that resembles HA, and a

lateral subdivision (pallial thickening or PT) that resembles HD. Further, the reptilian dorsal cortex shows a three-layered

structure, with a main cell layer located between superficial and deep cell-sparse layers. The main cell layer contains pyramidal

neurons having apical dendrites that span the superficial layer, where they are contacted by incoming thalamic axons. Further,

these pyramidal neurons give rise to descending projections to the striatum, thalamus, and brainstem. This basic laminar and

cellular organization partially resembles that of the neocortex, with pyramidal neurons located in deeper layers (5/6) giving rise to

long descending projections, and thalamic axons contacting the apical dendrites of these cells. Cell types sharing these features

and connections were likely present in the dorsal pallium of the common ancestor of mammals, birds, and reptiles (represented in

dark blue in schematics). However, many of the cell types present in the mammalian neocortex and avian hyperpallium likely

evolved independently in birds and mammals (such as the thalamorecipient stellate or stellate-like cells, or many of the neurons

involved in corticocortical connections). cp, main cell layer; DC, reptilian dorsal cortex; HA, apical hyperpallium; HD, densocel-
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share a similar functional columnar organization
(Revzin, 1970). Both in the neocortex and the hyper-
pallium, the sensory input is topographically
(retinotopically or somatotopically) organized
(Pettigrew and Konishi, 1976; Wilson, 1980; Wild,
1987; Funke, 1989a; Manger et al., 2002). In each
single neocortical unit, the excitation reaches layer 4
by way of thalamocortical axons, and then spreads
primarily in a columnar way first to supragranular
and later to infragranular layers (Petersen and
Sakmann, 2001), and this appears to be similar in the
avian hyperpallium (Revzin, 1970).

However, the similarity of hyperpallial subdivisions
and specific neocortical layers in terms of connectivity
is only partial (Veenman et al., 1995; Wild and
Williams, 1999). More importantly, developmental
and cellular analysis of the avian hyperpallium and
mammalian neocortex indicates that the subdivisions
of the avian hyperpallium are not true layers (as least,
as defined from a developmental point of view, but see
Striedter, 2005) and show important organizational
differences with neocortical layers (reviewed in
Medina and Reiner, 2000). For this reason, the sub-
divisions of avian hyperpallium have been called
pseudolayers, meaning false layers (Medina and
Reiner, 2000). This is based on the following facts.
First, although the layers of the mammalian neocortex
are aligned parallel to the ventricular surface and
develop perpendicular to radial glial fibers, the hyper-
pallial subdivisions are generally organized parallel to
radial glial fibers (Striedter and Beydler, 1997; Medina
and Reiner, 2000). Since, during development, the
majority of neurons migrate from ventricular to man-
tle positions following radial glial fibers (Rakic, 1972,
1995; Alvarez-Buylla et al., 1988; Striedter and
Beydler, 1997), the different disposition of neocortical
layers and hyperpallial subdivisions with respect to the
radial glial fibers likely reflects that they are formed in
radically distinct ways (Medina and Reiner, 2000).
Second, as a consequence of their apparently different
development, whereas for any single neocortical area
the majority of neurons of all layers are born in the
same ventricular sector (except interneurons, which
immigrate from the subpallium; Anderson et al.,
1997), in the avian hyperpallium the neurons of each
subdivision (HA, IHA, and HD) are primarily born in
different ventricular sectors (Medina and Reiner,
2000). Third, also as a consequence of their develop-
ment, whereas many layers of the neocortex typically
contain pyramidal neurons with an apical dendrite
that span the layers above (where they can be con-
tacted by axons of extrinsic origin ending in other
layers, as well as by axon collaterals of local neurons
of other layers; Mountcastle, 1997), the subdivisions
of avian hyperpallium contain neurons showing
multipolar or stellate-like morphology, with star-
like oriented dendrites that generally do not cross
subdivision boundaries (Figure 4) (Watanabe et al.,
1983; Tömbol, 1990; Medina and Reiner, 2000).
This means that, whereas in the mammalian neocor-
tex, the radial (translayer) disposition of dendrites
allows functional integration of layers (and constitu-
tes one of the anatomical basis of functional columns;
Lübke et al., 2000), the neuronal communication
between subdivisions of the avian hyperpallium is
apparently only possible by way of tangential, inter-
area axonal connections (Figure 4) (Kröner and
Güntürkün, 1999; Medina and Reiner, 2000; Wild
and Williams, 2000).

2.07.4.2 Layers and Subdivisions of the Reptilian
Dorsal Cortex. Possibilities and Uncertainties on
Dorsal Pallial Evolution

How did the different pallial organizations found in
neocortex and hyperpallium evolve and which was
the primitive condition in stem amniotes? Extant
reptiles have a very simple dorsal pallium, but this
shows some features that partially resemble, in a
very rudimentary way, both the medial–lateral sub-
divisions of avian hyperpallium and the lamination
of mammalian neocortex (Figure 4). The reptilian
dorsal pallium appears to have two parts that show
different cytoarchitecture and connections: a medial
part or dorsal cortex and a lateral part or pallial
thickening (as noted above, only part of the pallial
thickening may be part of the dorsal pallium)
(Figure 4). In lizards, the thalamic input primarily
reaches the pallial thickening, whereas the dorsal
cortex gives rise to the descending projections to
the striatum and brainstem (see references in pre-
vious section; reviewed in Medina and Reiner,
2000). In turtles, thalamic input reaches both the
pallial thickening and the dorsal cortex (Mulligan
and Ulinski, 1990), and extratelencephalic projec-
tions originate in the dorsal cortex (Hall et al., 1977;
Ulinski, 1986; Zhu et al., 2005). In lizards and
turtles, the pallial thickening shows important intra-
telencephalic connections (Medina and Reiner,
2000). Thus, the organization of the connections
and the relative position of these two divisions in
the reptilian dorsal pallium suggests a similarity of
the reptilian dorsal cortex and avian HA and the
reptilian pallial thickening and avian HD. As the
dorsal cortex or pallial thickening, the avian HA
and HD also appear to receive a minor direct input
from the sensory thalamus (Karten et al., 1973;
Watanabe et al., 1983; Wild, 1997; Wild and
Williams, 2000). On the other hand, the reptilian
dorsal cortex shows a simple three-layered struc-
ture, with a main, intermediate cell layer



180 Do Birds and Reptiles Possess Homologues
containing pyramidal-like cells, flanked by a super-
ficial and a deep cell sparse layer (Figure 4) (Reiner,
1993; Medina and Reiner, 2000; Colombe et al.,
2004). As neocortical layers, those of the reptilian
dorsal cortex are disposed parallel to the ventricular
surface and perpendicular to the radial glia. Further,
the pyramidal cells of the main cell layer show apical
dendrites that span the layer above, where they are
contacted by thalamic afferent axons, and they give
rise to long descending projections reaching the stria-
tum and brainstem (Figure 4) (Mulligan and Ulinski,
1990; Colombe et al., 2004). Thus, the reptilian dorsal
cortex shares with the neocortex some aspects of its
laminar and cellular organization. In both the neocor-
tex and reptilian dorsal cortex, the thalamic axons
contact the apical dendrites of deep pyramidal neu-
rons, and in both these, deep pyramidal neurons are
the source of long descending projections. Of interest,
in the neocortex, some thalamic afferent axons travel
tangentially in layer 1, where they contact apical den-
drites of pyramidal neurons (Rausell et al., 1992),
resembling the trajectory of thalamic axons in the
reptilian dorsal cortex. Further, analysis of chemically
different neurons in the dorsal pallium of mammals,
birds, and reptiles indicates that only the cell types
present in neocortical layers 5–6 (which contain the
deep pyramidal neurons giving rise to long descending
projections) are found in birds and reptiles, suggesting
that only layers 5–6 were present in the common
ancestor (Reiner, 1991). Further, comparative devel-
opmental studies suggest that only the subpial layer 1
and the deepest neocortical layers may have been pre-
sent in the common ancestor of extant reptiles, birds,
and mammals (Marı́n-Padilla, 1998).

All these data together suggest that the pyramidal
neurons found in the cell layer of the reptilian dorsal
cortex may be homologous to the pyramidal cells of
layers 5–6 of the mammalian neocortex, and possi-
bly to some of the multipolar projection neurons of
avian HA (at least including the neurons that, in
addition to giving rise to long descending projec-
tions, receive thalamic input). In contrast, the
thalamorecipient granule (or stellate) cells found in
neocortical layer 4 have no counterpart in reptiles
and are not homologous to the thalamorecipient
stellate-like cells found in avian IHA (Figure 4).
Stellate cells of neocortical layer 4 and stellate-like
cells of IHA apparently evolved independently (and
were produced as novelties) in the mammalian and
avian radiations. On the other hand, the pyramidal
neurons of neocortical layers 2–3 and part of the
projection neurons of avian hyperpallium involved
in corticocortical connections may also be newly
evolved. Finally, it is unclear what part of the mam-
malian neocortex (if any) is comparable to avian
HD and reptilian pallial thickening, both involved
in intratelencephalic connections. As noted above,
since the pallial thickening and apparently HD
receive retinal input, they may be comparable to a
lateral part of V1. In relation to this, V1 in rats
contains medial and lateral subdivisions which dif-
fer in cyto-, myelo-, and chemoarchitecture
(Palomero-Gallagher and Zilles, 2004). The medial
subdivision represents a monocular subfield,
whereas the lateral subdivision represents a binocu-
lar subfield. Nonplacental mammals, such as
marsupials, also show similar medial–lateral V1
subdivisions in the neocortex, representing areas of
either complex or simpler waveform processing
(Sousa et al., 1978). Thus, it is possible that such
mediolateral subdivisions were present in the origin
of mammals and, if so, the lateral V1 part may be
comparable to HD/pallial thickening of birds and
reptiles. Another possibility is that HD and/or the
pallial thickening are not comparable to any part of
V1, but rather to a more laterally located cortical or
subcortical pallial area, such as the insular cortex
(or part of it) or the claustrum (Striedter, 1997). The
position of these structures at the lateral extreme of
the neocortex, either abutting the lateral pallium or
within it, resembles that of both HD and pallial
thickening (Figure 2). In contrast to this possibility,
the connectivity patterns of HD and pallial thicken-
ing are very different from those of the insular
cortex or claustrum. For example, in contrast to
HD and pallial thickening, neither the insular cortex
nor the claustrum receive direct input from the dor-
sal lateral geniculate nucleus (Clascá et al., 1997;
Sefton et al., 2004). More studies will be needed to
resolve this issue. If the pallial thickening of reptiles
were not homologous (as a field) to any part of V1,
it would challenge the existence of a primary visual
area in the dorsal pallium of the amniote common
ancestor (since in lizards the geniculate projection
only reaches the pallial thickening but not the dorsal
cortex proper), opening new and important ques-
tions on neocortical evolution.

2.07.5 Functional Properties of the Visual
and Somatosensory Areas of Neocortex
and Sauropsidian Dorsal Pallium: Do
Mammals, Birds, and Reptiles See and
Feel the Same?

2.07.5.1 Visual Area: Retinotopy, Signal Types,
Binocularity, and Perception

The mammalian V1 contains a detailed point-to-
point retinal map, received through the retinogen-
iculocortical pathway, which subserves conscious
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vision (Kahn et al., 2000; Sefton et al., 2004;
Wässle, 2004). Neurons in V1 respond to orienta-
tion, direction, or color, and this information
reaches the cortex through mostly segregated paral-
lel pathways (Wässle, 2004). This information is
then processed and combined (a process that
involves higher-order areas), making possible ani-
mals’ visual perception of the world. Visual signals
are first detected by retinal photoreceptors, rods
(involved in detection of low light levels), and
cones (involved in detection of lights of different
wavelengths; i.e., they are color-sensitive). The sig-
nals detected at the photoreceptor level are then
processed and filtered through a complex retinal
system involving several cell types (including hori-
zontal, bipolar, amacrine, and ganglion cells),
connected through specific circuitries (Lee, 2004;
Wässle, 2004). At the end of this process, different
types of retinal ganglion cells respond to orienta-
tion, direction, motion, or color, and this
information is then transmitted to the brain through
the retinofugal pathways (one of which is the reti-
nogeniculate system). In primates, achromatic
retinofugal signals mainly reach the visual cortex
by way of the magnocellular layer of the geniculate
nucleus, whereas chromatic retinofugal signals
reach V1 mainly via either the koniocellular or the
parvocellular geniculate cells, and each pathway
mainly ends on a separate layer or sublayer in V1
(Chatterjee and Callaway, 2003; Lee, 2004).

In V1, orientation and direction signals represent
a first step for analysis of form or movement, in
which higher-order visual areas participate (Sincich
and Horton, 2005; Saul et al., 2005; Shmuel et al.,
2005; van Hooser et al., 2005). Neurons responsive
(or sensitive) to orientation or direction appear to be
present in V1 of a large variety of mammals
(including placental and marsupial species;
Murphy and Berman, 1979; Parnavelas et al.,
1981; Crewther et al., 1984; Orban et al., 1986;
Vidyasagar et al., 1992; Ibbotson and Mark, 2003;
Priebe and Ferster, 2005), and many mammals
appear to have at least a second visual area (V2)
involved in higher-order processing (Kaas, 2004;
Sefton et al., 2004), suggesting that some basic
aspects of form and movement perception are com-
mon to all mammals. Nevertheless, in some
mammals (such as marsupials) only a low percen-
tage of V1 neurons respond to motion (Ibbotson and
Mark, 2003), whereas other mammals possess
multiple higher-order visual areas, one of which
(V5/MT of primates) is specially involved in motion
perception (Riecansky, 2004; Sincich et al., 2005;
Silvanto et al., 2005). Thus, it appears that some
mammals have a better visual perception of
movement and form than others. Further, in mam-
mals (such as primates, cats, and rats, as well as
marsupials), some or many neurons of V1 are char-
acterized by binocular convergence (depending on
the degree of orbital convergence, which is maximal
in primates), and are involved in perception of depth
(stereoscopic vision) (Vidyasagar et al., 1992;
Barton, 2004; Grunewald and Skoumbourdis,
2004; Heesy, 2004; Menz and Freeman, 2004;
Read, 2005). But again, some mammals show
higher binocular convergence and have more visual
cortical areas involved in its analysis, indicating that
some species apparently have better depth percep-
tion than others. Nevertheless, in many mammals,
several noncortical areas (including pretectum,
superior colliculus, and other subcortical areas) are
involved in motion processing (Ibbotson and Price,
2001; Price and Ibbotson, 2001; Sefton et al., 2004).
The superior colliculus appears to be involved in the
spatial localization of biologically significant stimu-
lus rather than its recognition (where it is rather
than what it is) (Schneider, 1969), and can influence
head/eye movements and guidance toward or away
from a stimulus (reviewed by Sefton et al., 2004).
The visual cortex (with the participation of higher-
order areas) appears to be involved in perception of
both what the stimulus is (form and pattern discri-
mination) and where it is, among other aspects of
visual perception.

Regarding color perception, the majority of mam-
mals appear to have dichromatic vision, whereas –
among placental mammals – only some primates
have trichromatic vision. Among nonplacental
mammals, it appears that some Australian marsu-
pials may also have trichromatic vision. This
depends on the pigment (opsin) variety found in
retinal cone photoreceptors, and in the existence of
color opponent systems. It appears that most mam-
mals have two cone types: a majority of cones are
sensitive to medium or long wavelengths (M/L-
cones, sensitive to green or red), depending on the
species; and a minority of cones are sensitive to
short wavelengths (S-cones, sensitive to blue or
ultraviolet (UV)), depending on the species (Peichl
and Moutairou, 1998; Yokoyama and
Radlwimmer, 1998, 2001; Shi and Yokoyama,
2003; Gouras and Ekesten, 2004). Among placental
mammals, only some primates (including squirrel
monkeys, New World monkeys, and humans) have
a trichromatic color vision and their retina contains
cones sensitive to green, red, or blue. Many marsu-
pials also have M/L- and S-cones (Deeb et al., 2003;
Strachan et al., 2004), and it seems that they were
present in the retina of ancestral vertebrates well
before the emergence of mammals (Shi and
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Yokoyama, 2003). It has been suggested that the
green-sensitive and red-sensitive cones present in
mammals evolved from a single M/L cone present
in the common ancestor well before the origin of
mammals (Yokoyama and Radlwimmer, 1998).
However, several species of Australian marsupials
do have trichromatic retinas, with cones sensitive to
short, medium, or long wavelengths (Arrese et al.,
2002, 2005), which appears to be due to retention
from the ancestor (see below). It seems that the
retina of ancestral placental mammals became
dichromatic when these animals adopted nocturnal-
ity and some primates, subsequently, re-evolved
trichromacy (Arrese et al., 2002).

It seems that color perception involves a compar-
ison of the relative activities of different cones by
way of an opponent process, which starts in the
retina and is conveyed to the visual cortex by paral-
lel, anatomically segregated color-opponent systems
(Dacey, 2000). In mammals having a dichromatic
retina, only one opponent system exists, a blue–
yellow system, in which signals from blue cones
are opposed to signals from red or green cones. For
trichromatic retinas (such as those of some pri-
mates), there are two color opponent systems, one
for a red–green system, in which signals from red-
and green-sensitive cones are opposed, and another
one for a blue–yellow system, in which signals from
blue cones are opposed to a combined signal from
red and green cones (Dacey, 2000; Chatterjee and
Callaway, 2003). Specific retinal ganglion cells exist
for each color system. The blue–yellow information
is conveyed to V1 through the koniocellular genicu-
late pathway, whereas the red–green information is
conveyed by the parvocellular geniculate pathway
(Lee, 2004). The information reaching V1 is later
combined in higher-order visual areas. It is likely
that ancestral placental mammals only had the
blue–yellow system, and that the anatomical sub-
strate for the red–green system evolved as a novelty
in primates (Dacey, 2000; Lee, 2004).

In reptiles and birds, the retina contains cell types
(including rod and cone photoreceptors, as well as
horizontal, bipolar, amacrine, and ganglion cells)
and circuitries in general similar to many of those
present in mammals (Fernández et al., 1994; Kittila
and Granda, 1994; Ammermüller and Kolb, 1995;
Haverkamp et al., 1997, 1999; Luksch and Golz,
2003). Ganglion cells responsive to direction,
motion, or color are found in the retina of both
birds and reptiles, and cells responsive to orientation
are also found in birds (Granda and Fulbrook, 1989;
Guiloff and Kolb, 1994; Ammermüller et al., 1995;
Borg-Graham, 2001; Wilke et al., 2001; Jones and
Osorio, 2004). Retinal information is then conveyed
to the dorsal pallium by way of a retinotopically
organized retinogeniculodorsal pallial pathway
(Bravo and Pettigrew, 1981; Miceli and Repérant,
1982; Ehrlich and Mark, 1984; Mulligan and
Ulinski, 1990). This suggests that the dorsal pallium
of birds and reptiles may be involved in some
aspects of visual perception similar to those pro-
cessed by V1 in mammals. Consistent with this,
the visual hyperpallium of some birds (such as
owls) contains neurons showing selectivity for
orientation and movement direction (Pettigrew and
Konishi, 1976), and has been shown to be involved
in form discrimination, including some complex
aspects such as subjective contour discrimination
(Nieder and Wagner, 1999). In other birds (chicks
or pigeons), the hyperpallium is involved in motion
processing, far-field pattern discrimination, spatial
discrimination acquisition, and in sun-compass
associative learning (Gusel’nikov et al., 1977;
Leresche et al., 1983; Britto et al., 1990; Budzynski
et al., 2002; Watanabe, 2003; Budzynski and
Bingman, 2004). Among birds, the complexity of
visual processing by the hyperpallium appears to
be higher in owls (which are frontal-eyed birds)
than in other birds. In fact, the hyperpallium of
owls shows a larger size, a more detailed retinotopic
map, a much higher binocular convergence, and a
more complex visual processing than that of lateral-
eyed birds, such as pigeons (Pettigrew and Konishi,
1976; Nieder and Wagner, 1999, 2000, 2001; Liu
and Pettigrew, 2003). Thus, the visual hyperpallium
of owls is involved in depth perception and detec-
tion of visual illusions (subjective contours),
exhibiting a functional complexity analogous to
that of higher-order visual areas of highly visual
mammals such as primates and cats (Nieder
and Wagner, 1999, 2000, 2001; Liu and
Pettigrew, 2003; van der Willigen et al., 2003). In
contrast, binocularity in pigeons is low (Martin and
Young, 1983; McFadden and Wild, 1986; Holden
and Low, 1989). Further, although the hyperpal-
lium in pigeons is involved in motion perception
and far-field discrimination, other brain areas,
such as the optic tectum and the areas involved in
the tectothalamo-DVR pathway, also play very
important roles in motion processing or in other
aspects of visual discrimination (Gusel’nikov et al.,
1977; Leresche et al., 1983; Macko and Hodos,
1984; Britto et al., 1990; Wang et al., 1993;
Laverghetta and Shimizu, 1999; Crowder et al.,
2004; Nguyen et al., 2004). Among these areas,
the thalamic nucleus rotundus and its DVR target
play an important role in processing of ambient
illumination, near-field discrimination, spatial-pat-
tern vision, motion, and color (Wang et al., 1993).



Do Birds and Reptiles Possess Homologues 183
In reptiles, the visual dorsal cortex shows a coarse
retinotopic map (Mulligan and Ulinski, 1990), and
it appears involved in some aspects of visual proces-
sing, such as motion, discrimination acquisition,
and spatial learning, but not in brightness discrimi-
nation (Reiner and Powers, 1983; Grisham and
Powers, 1989, 1990; Prechtl, 1994; Prechtl et al.,
2000; Nenadic et al., 2002). However, as in pigeons,
other brain areas of reptiles, such as those involved
in the tectothalamo-DVR pathway, play a more
important role in brightness and pattern discrimina-
tion than the dorsal cortex (Morenkov and
Pivovarov, 1975; Reiner and Powers, 1983).

Regarding color perception, the retina of birds
and reptiles also supports color vision, but this
appears to be more complex than in mammals.
Thus, it appears that the retina of many diurnal
birds and reptiles contains four types of cones, sen-
titive to red, green, blue, or UV or near-UV light
(Ammermüller et al., 1995; Bowmaker et al., 1997;
Kawamura et al., 1999; Ventura et al., 2001; Smith
et al., 2002). The cones of many diurnal birds and
reptiles also contain colored oil droplets, which act
as filters and apparently enhance color discrimina-
tion (Bowmaker et al., 1997; Vorobyev, 2003).
Parallel opponent retinal pathways have been
shown in some species of reptiles, suggesting the
existence of tetrachromatic color vision in these
animals (Ammermüller et al., 1995; Ventura et al.,
2001). In turtles, the opponent color systems
described in the retina include a blue–yellow system,
a red–green system, and a UV–blue system, among
other possibilities (Ventura et al., 2001). It is unclear
whether all these systems are present in other rep-
tiles or in birds. As noted above, the blue–yellow
opponent system is apparently present in most
mammals and may have been present in stem
amniotes. However, the anatomical substrate of
the red–green pathway of turtles is likely nonhomo-
logous to that found in some primates. As noted
above, birds and reptiles possess a retinotopically
organized retinogeniculodorsal pallial pathway
comparable (likely homologous) to the retinotha-
lamo-V1 of mammals, suggesting that the avian
and reptilian dorsal pallium may be involved in
color vision processing. However, only a few
aspects of color vision (if any) may be processed in
the dorsal pallium of birds, and it appears that color
vision in birds and possibly reptiles is mainly (if not
only) processed by other brain areas and pathways,
such as the tectothalamo (rotundal)-DVR pathway
(Güntürkün, 1991; Chaves et al., 1993; Wang et al.,
1993; Chaves and Hodos, 1997, 1998).

All of these data together indicate that, although
the visual area of the reptilian dorsal cortex, avian
hyperpallium, and mammalian V1 are involved in
some similar basic aspects of visual perception,
many complex functions shown by the visual hyper-
pallium of some birds and by V1 of highly visual
mammals, such as depth perception (associated to
binocularity) and subjective contour discrimination,
among others, likely evolved independently.
Consistent with this, the anatomical substrate for
the binocularity is different in birds and mammals
(Casini et al., 1992; Medina and Reiner, 2000).
Further, the role of V1 in color processing and the
anatomical pathways related to it may have evolved
only in mammals. Regarding motion, the dorsal
pallial visual area of reptiles (at least turtles), birds,
and mammals appears involved in its processing,
and this may have characterized the dorsal pallial
visual area of stem amniotes. All these data suggest
that the retinogeniculodorsal pallial pathway found
in birds and reptiles is mainly comparable to part of
the magnocellular retinogeniculocortical pathway
of mammals, but not to the parvocellular pathway
(conveying mainly chromatic information of the
red–green system) nor possibly the koniocellular
pathway (conveying mainly chromatic information
of the blue–yellow system).

In reptiles and many birds, the retinotectotha-
lamo (rotundal)-DVR pathway is more developed
than the retinogeniculodorsal pallial pathway, and
appears to play an important role in some aspects of
visual processing, such as motion, color, and pattern
discrimination (perhaps important for knowing
both what the stimulus is and where it is). This
general pattern may have characterized stem
amniotes. It appears that early mammals were noc-
turnal animals, which may explain why many
extant mammals have dichromatic vision (instead
of the tetrachromatic vision that characterizes
many birds and reptiles). Perhaps this was accom-
panied by a regression in visual perception abilities
and their anatomical substrate, and an improvement
of other sensory systems, such as the somatosensory
and the auditory systems. The evolution of new
mammalian species living in diurnal niches was
likely accompanied by the great development of
the retinothalamodorsal pallial pathway, and by
the development of more visual neocortical areas
(Husband and Shimizu, 2001). An increase in size
and complexity of the retinothalamodorsal pallial
pathway also occurred in birds, but this was parti-
cularly important in some frontal-eyed birds (such
as the owl). Did this involve the development
of higher-order visual areas in the dorsal pallium
of owls? As noted above, the visual hyperpallium of
birds is involved in highly complex visual functions
comparable to those carried out by higher-order
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visual areas of the mammalian neocortex.
However, physiological studies have not analyzed
the existence of multiple visual areas in the hyper-
pallium of owls. A recent study has shown the
existence of at least two somatosensory represen-
tations in the frontal hyperpallium of owls
(Manger et al., 2002), and it is likely that more
than one visual representation exists in the large
hyperpallium of owls.

Finally, regarding the question of whether mam-
mals, birds, and reptiles see the same, it is clear that
not all mammals have the same degree of depth,
color, and/or form perception, and this is also true
in birds. Regarding color vision, although many
diurnal reptiles and birds appear to have tetrachro-
matic vision and most mammals have dichromatic
vision, there are examples of color-blind or trichro-
matic animals within mammals. Further, a few
mammals (such as mouse and rat) and many birds
and reptiles detect UV light, whereas most mammals
(including humans) do not. Thus, the question of
whether mammals, birds, and reptiles see the same is
nonsense since visual perception differs among
mammals, among birds, and possibly among rep-
tiles. Nevertheless, some basic aspects of visual
perception appear to be similar between many
amniotes. Of particular interest is the fact that
some complex visual functions related to form and
depth perception appear to be similar between frontal-
eyed birds (such as owls) and some highly visual
mammals such as cats and some primates. As noted
above, the anatomical substrate for the complex
visual processing by the dorsal pallium found in
these animals likely evolved independently. Further,
in birds and reptiles, many aspects of visual percep-
tion (including color perception) appear to be
processed in the DVR (ventrolateral pallium), rather
than the dorsal pallium.

2.07.5.2 Somatosensory Area: Somatotopy,
Signal Types, Perception, and Multiple Maps

In mammals, S1 contains a somatotopically orga-
nized map of the whole body (contralateral side)
(Tracey, 2004). The information received by S1 via
the ventrobasal thalamic complex includes tactile
(touch, pressure), vibration, and proprioceptive
(postural) signals, as well as pain and temperature.
The somatosensory information reaching the frontal
hyperpallium in birds by way of DIVA is also soma-
totopically organized, and includes at least tactile
(light touch and pressure signals) and vibration
information, mostly from the contralateral body
surface (Wild, 1987; Funke, 1989a). Based on the
external cuneate (which receives proprioceptive
information from extraocular and wing muscles;
Wild, 1985; Hayman et al., 1995) and spinal inputs
to DIVA (Schneider and Necker, 1989; Wild, 1989),
it is likely that the frontal hyperpallium also receives
proprioceptive, pain, and temperature signals.
However, in contrast to mammals, mainly the
body (including the neck) appears to be represented
in the frontal hyperpallium in several avian species
(Wild, 1987, 1997), although some studies have also
reported representation of the beak (Korzeniewska,
1987; discussed in Wild, 1989). In birds, it appears
that the head somatosensory information is mostly
represented in another pallial area, called nucleus
basalis, located in the DVR (Berkhoudt et al., 1981;
Dubbeldam et al., 1981; Wild et al., 1997). The
somatosensory information reaches this DVR
nucleus by way of a direct, somatotopically orga-
nized projection from the principal sensory
trigeminal nucleus (Dubbeldam et al., 1981; Wild
and Zeigler, 1996; Wild et al., 2001). Further, in
some birds, such as the budgerigar, the nucleus
basalis of the DVR includes not only head but also
body representation, and this appears to be more
detailed than that in the hyperpallium (Wild et al.,
1997). Thus, it appears that birds possess two dif-
ferent systems for pallial somatosensory
representation, which show different degrees of
development depending on the species. As noted
above, only the hyperpallial representation appears
comparable to S1 of mammals. The frontal dorsal
cortex of reptiles also appears to receive somatosen-
sory information of the body (in lizards, turtles, and
possibly crocodiles) and, at least in some lizards,
also the head (Desfilis et al., 1998). More studies
are needed to know whether this pattern is common
in other reptiles. It is unclear whether the somato-
sensory information reaching the frontal dorsal
cortex in reptiles is or is not topographically orga-
nized. Although it seems likely that the primary
somatosensory area observed in the dorsal pallium
of extant birds, reptiles, and mammals evolved from
a homologous area present in their common ances-
tor (stem amniotes), the scarcity of data in reptiles
does not allow any suggestion on the specific fea-
tures of this primitive area. In any case, this area was
likely very small, and likely lacked many of the
attributes (in terms of anatomical organization, con-
nections, and functional complexity) found in S1 of
mammals and in the frontal hyperpallium of birds.
As noted above, the cytoarchitectural organization
and intrinsic columnar circuitry shown by the neo-
cortex and hyperpallium evolved independently.
Since in birds there is a small overlap of the primary
visual and somatosensory areas in the hyperpallium
(Deng and Wang, 1992), it is possible that a partial
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ovelap of sensory areas characterized the dorsal
pallium of stem amniotes (Figure 3).

Of interest, the neocortex of extant mammals
contains multiple somatosensory representations,
many of which (including S1, a secondary somato-
sensory area or S2, and the parietal ventral area)
appeared to be already present in the origin of mam-
mals (Krubitzer, 1995; Kaas, 2004). This provides
an idea of the importance and high quality of soma-
tosensory perception in these animals, and this great
development may be related to the fact that ances-
tral mammals were nocturnal animals, primarily
relying on senses other than vision. Further, soma-
tosensory representation is even more complex in
some mammals, such as primates, in which S1 con-
tains four subdivisions (areas 3a, 3b, 1, and 2), each
one showing a complete body representation
(Tracey, 2004). In other mammals, including
rodents, S1 has a single body representation, possi-
bly comparable to area 3b of primates (Northcutt
and Kaas, 1995). In birds having a large hyperpal-
lium (such as the owl), two separate somatosensory
representations of the claw have been observed,
each showing a detailed somatotopic organization
(Manger et al., 2002). Thus, it appears that at least
some birds have a more complex somatosensory
representation in the hyperpallium, which may
mean that they have a more elaborated analysis of
this information and a more sophisticated somato-
sensory perception. Since the somatosensory area of
the dorsal cortex of reptiles is apparently very small,
it seems unlikely that multiple somatosensory repre-
sentations were present in the dorsal pallium of stem
amniotes. This means that the additional somato-
sensory hyperpallial area found in owls likely
evolved independently and cannot be compared to
any of the multiple S1 areas found in primates, to
S2, nor to other somatosensory areas of mammalian
neocortex (Manger et al., 2002). Another interest-
ing aspect of somatosensory representation in the
neocortex of mammals is its activity-dependent
plasticity, which is important for behavior modifi-
cation and adaptation as a result of sensory
experience (Kaas, 1995; Tracey, 2004). It appears
that plasticity also characterizes the somatosensory
hyperpallial area of owls (Manger et al., 2002).

Regarding the question of whether mammals,
birds, and reptiles feel the same, based on the num-
ber of pallial representations and variety of
somatosensory receptors found in mammals (Kaas,
2004; Tracey, 2004), it appears that in general
mammals have a much better somatosensory per-
ception than reptiles and most birds. But again, it
appears that somatosensory perception differs
among mammals, as well as among birds and
maybe among reptiles. One of the reasons is that
the number of somatosensory representations and
higher-order areas varies between species (Kaas,
2004). Another reason may be the existence of dif-
ferences in peripheral receptors (in terms of quality,
quantity, and/or location). For example, the com-
plex receptor type found in owl claws (Manger
et al., 2002) may not be present in the claws of
other birds, or may be present at a low number/
area ratio. Further, different parts of the body and
head have a different representation (in terms of
relative size) in the neocortex/dorsal pallium in dif-
ferent species, which depends on their specific
behavior. For example, the S1 of humans has a
very large (or relatively large) representation of
digits (which is related to the great tactile discrimi-
nation and exploratory and manipulatory use of our
fingers), whereas in S1 of mouse and rat, the digits
are not so well represented but the area related to
the whiskers (barrel field area) is relatively large
(which relates to the great importance of vibrissae
in exploratory behavior and texture discrimination
in rodents; reviewed by Waite, 2004). This rule also
appears to be true for somatosensory areas in pallial
regions other than the dorsal pallium. An example
of this is found in the nucleus basalis of the budger-
igar, which shows a larger size and more extensive
representation of areas such as the beak, highly used
by these animals (Wild et al., 1997). Similarly, the
claw of barn owl, used for perching and grasping
prey and containing an elaborated tactile sensory
receptor, likely has a larger representation in the
frontal hyperpallium of this animal (including two
areas, as noted above; Manger et al., 2002) than
that of the pigeon or the canary.

2.07.6 Conclusions

The neocortex contains specific sensory, associative,
and motor areas that allow mammals to obtain a
detailed map of the world and to adapt their behavior
to it. Available data suggest that at least two such
areas, the primary visual area and the primary soma-
tosensory area, are also present in the dorsal pallium
of birds and reptiles, and likely evolved from similar
areas found in stem amniotes. However, these dorsal
pallial areas present in the common ancestor likely
had a very simple cytoarchitecture (possibly includ-
ing a rudimentary three-layered structure plus at least
two mediolateral subdivisions), and possessed fewer
cell types and connections than those found in the
mammalian neocortex and avian hyperpallium. For
example, the complex six-layered organization of
neocortex and the four mediolateral subdivisions of
hyperpallium evolved independently in mammals or
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birds. Further, the columnar functional organization
of neocortex and the columnar-like organization of
hyperpallium also evolved independently. In addi-
tion, these primitive areas of stem amniotes were
likely involved in few aspects of visual or somatosen-
sory perception. The role of the visual area in
complex aspects of form and pattern discrimination
or in depth perception (associated to binocularity)
likely evolved independently in mammals and some
birds, and its role in color perception (and the anato-
mical substrate related to it) apparently evolved only
in the mammalian radiation. Finally, available data
suggest that the dorsal pallium of stem amniotes may
have lacked a true somatomotor area, and this
evolved independently in birds and mammals (see A
History of Ideas in Evolutionary Neuroscience,
Phylogenetic Character Reconstruction, Field
Homologies, Evolution of the Nervous System in
Reptiles, Visual Cortex of Turtles, The Evolution
of Vertebrate Eyes, The Evolution of Ultraviolet
Vision in Vertebrates, What Fossils Tell Us about
the Evolution of the Neocortex, The Origin of
Neocortex: Lessons from Comparative Embryology,
Reconstructing the Organization of Neocortex of the
First Mammals and Subsequent Modifications,
The Evolution of Motor Cortex and Motor
Systems, The Dual Elaboration Hypothesis of the
Evolution of the Dorsal Thalamus).
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